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A comprehensive analytical model of the interaction of the cantilever tip of the

atomic force microscope (AFM) with the sample surface is developed that accounts

for the nonlinearity of the tip-surface interaction force. The interaction is modeled as

a nonlinear spring coupled at opposite ends to linear springs representing cantilever

and sample surface oscillators. The model leads to a pair of coupled nonlinear

differential equations that are solved analytically using a standard iteration procedure.

Solutions are obtained for the phase and amplitude signals generated by various

acoustic-atomic force microscope (A-AFM) techniques including force modulation

microscopy, atomic force acoustic microscopy, ultrasonic force microscopy,

heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic

microscopy (RDF-AFUM), and the commonly used intermittent contact mode

(TappingMode) generally available on AFMs. The solutions are used to obtain a

quantitative measure of image contrast resulting from variations in the Young

modulus of the sample for the amplitude and phase images generated by the A-AFM

techniques. Application of the model to RDF-AFUM and intermittent soft contact

phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts

variations in the Young modulus of the material of 24 percent from the RDF-AFUM

image and 18 percent from the intermittent soft contact image. Both predictions are in

good agreement with the literature value of 21 percent obtained from independent,

macroscopic measurements of sheet polymer material.

PACS numbers: 68.37.Tj, 81.07.-b, 82.35.Np, 68.37.-d
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I. INTRODUCTION

The atomic force microscope 1 (AFM) has become an important nanoscale

characterization tool for the development of novel materials and devices. Dynamic

implementations of the AFM (we shall call acoustic-atomic force microscopies or A-

AFM)) such as intermittent contact mode (TappingMode), force modulation microscopy 2

(FMM), atomic force acoustic microscopy 3-4 (AFAM), ultrasonic force microscopy 5-6

(UFM), heterodyne force microscopy7-8 (HFM), resonant difference-frequency atomic

force ultrasonic microscopy9 (RDF-AFUM) and variations of these techniques 10-14 utilize

the interaction force between the cantilever tip and the sample surface to extract

information about sample material properties. Such properties include sample elastic

moduli, adhesion, surface viscoelasticity, embedded particle distributions, and

topography. The cantilever tip-sample surface interaction force is generally nonlinear5 ,

although in some operational modes the interaction force can be taken to a good

approximation to be linear. A comprehensive treatment of the interaction force, however,

is lacking because of the difficulty in accounting for the nonlinear terms. We consider

here a detailed analytical treatment of the cantilever tip-sample surface interaction force

that includes the lowest-order terms in the nonlinearity. Such terms are sufficient to

account for all operational characteristics and material properties obtained from the

various acoustic-atomic force microscopies cited above.

We begin in Section II by developing a realistic mathematical model of the

interaction between the cantilever tip and the sample surface that involves a coupling via

the nonlinear interaction force of separate dynamical equations for the cantilever and the

sample surface. A general solution is found that contains static terms (including static
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terms generated by the nonlinearity), linear oscillatory terms, and nonlinear oscillatory

terms. Individual or various combinations of these terms are found to apply as

appropriate to a description of a particular acoustic-atomic force microscopy. The

complexity of the general solution begs consideration of ways to simplify the

mathematical expression by estimating the relative magnitudes of the material and

dynamical parameters embedded in the equation. Such estimates are considered in

Section III. Application of the solution to each of the above-cited acoustic-atomic force

microscopies is given in Section IV using simplifications resulting from the estimate of

parameter values obtained in Section III. Section V provides an analytical analysis of

image contrast for each of the A-AFM techniques addressed in the model. Application of

the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2

polyimide polymer is discussed in Section VI.

II. ANALYTICAL MODEL OF NONLINEAR CANTILEVER DYNAMICS

A. General dynamical equations

The cantilever of the AFM is able to vibrate in a number of different modes in

free space corresponding to various displacement types (flexural, longitudinal, shear,

etc.), resonant frequencies, and effective stiffness constants. Each cantilever mode n of a

given displacement type may be represented by an effective mass m c attached to a spring

of stiffness constant kcn and resonant frequency ωcn = kcn / mc . Since each mode is

subject to the same driving forces, we may express the cantilever time-dependent

displacement ηc in its most general form as the sum over all modes and write
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ηc ( t ) =∑ηcn ( t) 	 (1)
n

where ηcn is the cantilever displacement corresponding to mode n and t is time. During

contact of the cantilever with the sample surface, vibrations of the cantilever give rise to

oscillations of the sample surface via the cantilever tip-sample surface interaction forces.

Likewise, an oscillating sample surface resulting, for example, from an incident

ultrasonic wave generated at the opposite surface of the sample will also give rise to

oscillations of the cantilever via the same interaction forces. The vibrating sample

surface may be represented by an effective mass ms attached to a spring of stiffness

constant ks .

For definiteness we consider only flexural modes of the cantilever and normal

out-of-plane oscillations for the sample surface as indicated in Fig. 1. The displacement

of the cantilever tip is ηc and the normal displacement of the sample surface isηs . The

quiescent, equilibrium distance between the cantilever tip and the sample surface in the

presence of an interaction force is z0. The tip-surface separation distance at an arbitrary

time, when the cantilever or sample surface or both are in oscillation in the presence of

the interaction force, is z. The spring model representing the dynamics of the tip-surface

interaction is also shown in Fig. 1. Both the cantilever and sample surface springs are

assumed to be linear with stiffness constants kcn and ks , respectively, while the

nonlinear interaction forces are represented by a nonlinear spring having a linear stiffness

constant F ′ and a nonlinear stiffness constant F′′ as indicated in the figure.
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When the cantilever tip is in contact with the sample surface, the nonlinear tip-

surface interaction force F(z) provides a coupling of the cantilever and surface

oscillations. The dynamics may be represented by a set of coupled differential equations

for each mode n as

mc^cn +yc^cn + kcnr7cn = F (z) + Fc cos coc t	 (2)

msr7sn + ys^sn + ksr7sn = F (z) + Fs cos(cost + B)	 (3)

where r7cn (positive down) is the cantilever tip displacement for mode n, r7sn (positive up)

is the sample surface displacement for mode n, coc is the angular frequency of the

cantilever oscillations, cos is the angular frequency of the sample surface vibrations, yc is

the damping coefficient for the cantilever, ys is the damping coefficient for the sample

surface, Fc is the magnitude of the cantilever driving force, Fs is the magnitude of the

sample driving force that we assume here to result from an incident ultrasonic wave

generated at the opposite surface of the sample, and B is a phase contribution resulting

from the propagation of the ultrasonic wave through the sample material.

We have shown previously9 that for an acoustic wave propagating through a

sample of thickness a/2 with phase velocity c and wave number k, containing an

embedded feature of thickness d/2 for which the phase velocity is cd, the total phase

contribution B is given by



(4)
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θ = − (χ + Δχ)

where

	

χ = 
ka	 −1 sin ka

	2 	
5— + tan

eaa — cos ka

_

	

−ψ
⎡ 1 	 eαa cos ka − 1

Δχ 
— ⎣⎢ 2 + (eαa − cos ka ) 2 + sin2 ka ⎦ 	

(6)

and

ψ = 	 .kd 
(cd − c)	

(7)
cd

The factor − χ is the contribution to the phase from the featureless bulk material and

− Δχ is the contribution from a phase variation due to the embedded feature.

A typical nonlinear interaction force F(z) is shown schematically in Fig.2. This

force results from a number of possible fundamental mechanisms including electrostatic

forces, van der Waals forces, interatomic repulsive (Born-Mayer) potentials, and Casimir

forces 15 . It is also influenced by chemical potentials as well as hydroxyl bonds resulting

from atmospheric moisture accumulation on the cantilever tip and sample surface 16 .

We note from Fig. 1 that for a given mode n, z = zo − (ηcn + ηsn) . We use this

relationship in a power series expansion of F(z) about zo to obtain

F (z) = F (z0 ) + F ′  (z0 )(z − z0 ) + 
2 

F ′′ (z0 )(z − z0 ) 2 + .. .

(8)
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1
= F (z0 ) − F ′ (z0 )(ηcn +ηsn) + 

2 
F ′′ (z0 )(ηcn +ηsn )

2
 + ...

where the superscripted prime denotes derivative with respect to z. Substitution of

Eq.(8) into Eqs.(2) and (3) gives

mc^cn +γc^cn + L kcn + F ′  (z0 ) ]i7cn + F ′  (z0 )ηsn = F (z0 ) + Fc cos ωc t

1
+ 

2 
F ′′ (z0 )(ηcn +ηsn )

2 + ...

mAn +γAn + Lks + F ′  (z0 ) l j,7sn + F ′ (z0 )ηcn = F (z0 ) + Fs cos(ωs t + θ)

1
+ 

2 
F ′′ (z0 )(ηcn +ηsn ) 2

 +...

Equations (9) and (10) are the coupled equations representing the cantilever tip-sample

surface dynamics resulting from the nonlinear interaction force at the sample surface.

B. Solution to general dynamical equations

We solve the coupled nonlinear Eqs.(9) and (10) for the steady-state solution by

writing the coupled equations in matrix form and using a common iteration procedure to

solve the matrix expression. The first iteration involves solving the equations for which

(9)

(10)

the nonlinear terms are neglected. The second iteration is obtained by substituting the



first iterative solution into the nonlinear terms of Eqs.(9) and (10) and solving the

resulting equations. The procedure provides solutions both for the cantilever tip and the

sample surface displacements. Since the procedure is much too lengthy to reproduce here

in full detail, only the salient features of the procedure leading to the steady state solution

for the cantilever displacement qc = Y—qcn are given. We begin by writing

qcn = £cn + ^cn + I;cn 	 (11)

and

qsn = £sn + ^sn + I;sn 	 (12)

where £cn and ĉn represent the first iteration (i.e. linear) static and oscillatory solutions,

respectively, for the nth mode cantilever displacement, I;cn represents the second iteration

(i.e., nonlinear) solution for the nth mode cantilever displacement, and £sn , ^sn , and I;sn

are the corresponding first and second iteration nth mode displacements for the sample

surface.

i. First iterative solution

The first iterative solution is obtained by linearizing Eqs.(9) and (10), writing the

resulting expression in matrix form, and solving the matrix expression assuming

sinusoidal driving terms Fc eiwct and Fs eiwst for the cantilever and sample surface,

respectively. The first iteration yields a static solution £cn and an oscillatory solution

ĉn for the cantilever. The static solution is given by
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__ 	 ksF (zo )
εcn 

kcnks + F′ (zo )(kcn + ks )

The first iterative oscillatory solution is given by

ξcn = Qcc cos(ωc t + αcc −φcc) + Qcs cos(ωs t −φss + θ) 	 (14)

where

φcc =
	 (15)

(13)

tan − 1 ωc (γs kcn +γc ks ) − ω^ (γs mc +γc ms ) + F ′ (zo )ωc (γs + γc )

kcn ks + ms mcω^ − ωc (ms kcn + mc ks +γcγs ) + F′ (zo )(kcn + ks − msωc − mcωc )

φss =
	 (16)

tan − 1 ωs (γskcn +γc ks ) − ωs (γs mc +γc ms ) + F ′ (zo )ωs (γs + γc )

kcn ks + ms mcωs − ωs (ms kcn + mc ks +γcγs ) + F′ (zo )(kcn + ks − msωs − mcωS )

Qcc = Fc { [ks + F′  (zo ) − msωc
 ]2 + γSωc }

1 / 2 { [kcnks + msmcωc

− ωe (mskcn + mcks +γcγs ) + F′ (zo )(kcn + ks − msωC − mcωc )]	 (17)

+ [ωc (γskcn +γcks ) − ω4 (γsmc +γcms ) + F′ (zo )ωc (γs +γc)] 2 F1/2

and

Qcs = −FsF ′ (zo ) { [kcn ks + ms mcωs − ωs (mskcn + mc ks +γcγs )
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+ F ′ (zo ) (kcn + ks — mscos — mccos )] 2
	 (18)

+ [cos (Ys kcn + Yc ks ) — cos (Ys mc + Yc ms ) + F ′ (zo )cos (Ys + Yc ) ] 2 } -1/2

ii. Second iterative solution

The second iterative solution I;cn for each mode n of the cantilever is

considerably more complicated, since it contains not only sum-frequency, difference-

frequency, and harmonic-frequency components, but linear and static components as

well. The second iterative solution I;cn is thus written as

I;cn — I;cn,stat +I;cnjin +I;cn,diff +I;cn,sum +I;cn,harm	 (19)

where I;cn , stat is a static or “dc” contribution generated by the nonlinear tip-surface

interaction, I;cn , lin is a generated linear oscillatory contribution, I;cn , diff is a generated

difference-frequency contribution resulting from the nonlinear mixing of the cantilever

and sample oscillations, I;cn ,sum is a generated sum-frequency contribution resulting from

the nonlinear mixing of the cantilever and sample oscillations, and I;cn ,harm are

generated harmonic contributions.

Generally, the cantilever responds with decreasing displacement amplitudes as the

drive frequency is increased above the fundamental resonance, even when driven at

higher modal frequencies. Thus, acoustic-atomic force microscopy methods do not

generally utilize harmonic or sum-frequency signals. For expediency, such signals from
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the second iteration will not be considered here. Only the static, linear, and difference-

frequency terms from the second iteration solution are relevant to currently-used A-AFM

modalities.

The static contribution generated by the nonlinear interaction force is obtained to

be

1	 k F zs	 o′ ′
ζcn , stat = 4 kcnks + F ′ (z ()(k n + ks) 

[2ε° + QCC + Q s + 0C + Q s

(20)

+ 2QccQsc cos(αcc − 2φcc ) + 2QcsQss cos αss ]

where

ε = 	
(kcn + ks )F (zo)	

,
o kcnks + F ′ (zo ) (kcn + ks)	

(21 )

Qsc = −FcF ′ (zo ) { [kcnks + ms mcωC − ωe (mskcn + mc ks +γcγs )

+ F ′ (zo ) (kcn + ks − msωc − mcω
2 )] 2
	 (22)

+ [ωc (γskcn +γcks )− ωC (γsmc +γc ms ) + F ′ (zo )ωc (γs +γc ) ] 2 } −1/2

Qss = Fs{ [kcn + F ′ (zo ) − mcωs ]
2 +γcωs } 1/2 

{ [kcn ks + msmcωs

− ωs (ms kcn + mc ks +γcγs ) + F ′ (zo )(kcn + ks − msωs − mcωs )] 2
	 (23)

+ [ωs (γskcn +γc ks ) − ωs 	
21 	 1/2

(Ysmc + Ycros) + F ′ (zo )ws (Ys + rc )1 }—
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(28)
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αcc = tan − 1 	 γsωc 	 (24)
k F z	 m ω 2s 	o	 s c+ ′ 	 −( )

αss = tan − 1 	 γcωs 	 (25)
kcn + F ′ (zo ) − mcωs

and φcc is given by Eq.(15), Qcc by Eq.(17) and Qcs by Eq.(18).

The linear oscillatory contribution ζcn , lin generated by the nonlinear interaction

force in the second iteration is obtained to be

ζcn , lin = R c εo
F ′ (zo ) [Qcc + Qsc + 2QccQsc cosαcc ]

1
 
/ 2 cos(ωc t − 2φcc + βc + μ cc )

cc

(26)

+ Ds εoF′′ (zo )[Q s + Q s + 2QssQcs cos αss ]1/2 cos(ωs t − 2φss + βs + μ ss + θ)
Rss

where

μ cc = tan−1 	 Qc c sin αcc

Qcc cosαcc + Qsc

tan−1 	 Qss sin αssμ ss ——	 Qss cosαss + Qcs

βc = tan − 1 γsωc 	 (29)
ks − msωC
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βs = tan − 1 γsωs 

2
	 (30)

ks − msωs

Dc = [(ks − msωc
2 ) 2 

+ γs
2ω c

2 ]1/2 ,
	 (31)

Ds = [(ks − msωs
2 ) 2 

+ γs
2ω s

2 ]1/2 ,
	 (32)

Rss = { [kcnks + msmcωs − ωs (mskcn + mcks +γcγs ) + F′ (zo) (kcn + ks − msωs − mcωs )]2

+ [ωs (γskcn +γcks ) − ωs (γsmc +γcms ) + F′ (zo )ωs (γs +γc) ]2 } 1/2 	 (33)

and

Rcc = { [kcnks + ms mcωC − ωc (mskcn + mcks +γcγs ) + F′ (zo)(kcn + ks − msωc − mcωc )]2

+ [ωc (γskcn +γcks ) − ωc (γsmc +γcms ) +p (zo )ωc (γs +γc) ] 2 }1/2 	 (34)

The difference-frequency contribution ζcn,diff generated by the nonlinear

interaction force in the second iteration is obtained to be

ζcn,diff = Gn cos[(ωc − ωs ) t −φcc +φss + βcs −φcs +Γ−θ] 	 (35)

where
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G =
1 Dcs F′′ (zo ) {QcQs + QsQs + QcQs + QsQs 	 (36)

n 2 Rcs

+ 2QccQcs Qsc Qss cos(αcc + αss) + 2Q sQcsQss cosαss

+ 2Qcc Q sQsc cosαcc + 2Q cQssQcs cosαss

+ 2QccQss Qcs Qsc cos(αcc − αss) } 1 / 2 	
,

Dcs = Lks − ms (ωc − ωs ) ] 2 +γs (ωc − ωs )
2

,	 (37)

22	 ( )

	

Rcs = Rcs 1 + Rcs 2 	 38

Rcs1 = kcn ks − ms kcn (ωc − ωs )
2
 − mc ks (ωc − ωs )

2
 + ms mc (ωc − ωs )

4
	 (39)

− γcγs (ωc − ωs )2 + F′ (zo ) Lkcn + ks − ms (ωc − ωs )2 − mc (ωc − ωs )
2 ]

Rcs 2 = (ωc − ωs )(γs kc +γc ks ) − (ωc − ωs )
3
 (γs mc +γc ms ) 	 (40)

+ F′ (zo )(ωc − ωs)(γs + γc ) ,

	

φcs = tan − 1 Rcs 2 	 (41)
Rcs 1

βcs = tan − 1 	 γs (ωc − ωs )
2,(42)

ks − ms (ωc − ωs )



IF = tan— 1
	

QccQcs sin acc — QscQss sin ass + QccQss sin(acc — ass )

QccQcs cosacc + QscQss cosass + QccQss cos(acc — ass) + QcsQsc
(43)

16

and

iii. Salient features of the solution set

The total static solution to the coupled nonlinear equations (9) and (10) for the

cantilever i7cn,stat is the sum of the contribution scn , given by Eq.(13), from the first

iterative solution and the contribution ';cn , stat, given by Eq.(20), from the second

iteration as

i7cn , stat = scn + ';cn ,stat 	 . 	 (44)

The total linear solution i7cn,lin to Eqs.(9) and (10) is the sum of the contribution ^cn

given by Eq.(14) and the contribution ';cn , lin given by Eq.(26) as

i7cn , lin = ^cn + ';cn , lin .	 (45)

The total difference-frequency solution i7cn , diff to Eqs.(9) and (10) is simply the

contribution ';cn , diff given by Eq,(35).

It is interesting to note that scn and the so component in i7cn ,stat do not

explicitly involve the cantilever drive amplitude Fc and the sample surface drive

amplitude Fs , although other terms involving the Q factors, given by Eqs.(17), (18), (22),
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and (23), in ';cn,stat do involve these drive amplitudes. This means that only the

contributions stemming from the nonlinearity in the cantilever tip-sample surface

interaction force respond directly to variations in the drive amplitudes and in particular to

the physical features of the material giving rise to variations in Fs . Further, the

magnitude of all second iteration (i.e. nonlinear) contributions, ';cn,stat , ';cn,lin , and

';cn,diff are strongly dependent on the cantilever tip-sample surface separation zo , since

the value of the nonlinear stiffness constant F ′′ (zo ) that dominates these contributions is

highly sensitive to zo . Indeed, F ′′ (zo ) attains a maximum value near the bottom of the

force-separation curve of Fig.2.

It is interesting to note that the condition kcnks + F ′ (zo )(kcn + ks ) _ 0 gives a

singularity in Eq.(13) for ccn, in Eq.(20) for ';cn,stat, and in Eq.(26) [via co of Eq.(21)]

for ';cn,lin . This condition on F ′ (zo ) does not admit a solution to the original coupled

Eqs.(9) and (10), since such a condition leads to a value of zero for the secular

determinant of the coupled equations. On the other hand, the conditions F ′ (zo ) _ —kcn

or F ′ (zo ) _ —ks do give rise to valid solutions to Eqs.(9) and (10) for all driving forces,

static and non-static. The negative value of F ′ (zo ) in this case means that the tip-surface

separation distance zo is smaller than the separation corresponding to that at the bottom

(absolute minimum) of the force-separation curve. Eqs.(9) and (10) show that a negative

value of F ′ (zo ) reduces the effective magnitude of the stiffness constants both for the

cantilever and the surface displacements. Indeed, the values F ′ (zo ) _ —kcn and

F′ (zo ) _ —ks give rise to effective null stiffness constants for the cantilever and surface
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displacements, respectively, as indicated by the coefficients of ηcn and ηsn in Eqs.(9)

and (10).

A further decrease in tip-surface separation zo produces even larger negative

values ofF ′ (zo ). From Eq.(9) we may define the effective cantilever resonance

frequency for mode n as ωcn , eff = [kcn + F′ (zo )] / mc . Thus, when F′ (zo ) < −kcn ,

ωcn ,eff becomes purely imaginary and produces an additional damping factor in the

solutions to Eqs.(9) and (10). Such damping is reported by Rabe, Janser, and Arnold 17 .

It is straightforward to obtain mathematically the effects of such an additional damping

factor for the cantilever displacement amplitudes ηcn, if one considers only Eq.(9) and

ignores the coupling term ηsn . For a driving force given by Fce
iωct the magnitude of the

steady state solution to the equation is | ηcn |= Fc { [kcn + F′ (z0 ) − mcωc ]2 +γcωe F 
1/2

For a fixed drive frequency ωc , effective cantilever mass mc , and cantilever spring

constant kcn , the factor F ′ (z0 ) produces a decrease in the cantilever displacement

amplitude |ηcn | when | F ′ (z0 ) | > | kcn − mcωc | . Note that it matters little whether

F′ (z0 ) is positive or negative (i.e., whether z 0 is greater than or less than the value of z 0 at

the bottom of the force-separation curve). As the cantilever is brought ever closer to the

sample surface F ′ (z0 ) becomes ever larger in magnitude and |ηcn | for each mode n

continues to decrease until the repulsive force in the F(z o ) curve of Fig.2 exceeds the

fracture strength of the cantilever.

Finally, it is important to note that for large deflections of the cantilever that

generally occur for hard contact (linear regime), large bending moments are introduced



19

that produce significant frequency shifts in the cantilever resonance frequencies quite

apart from those introduced by the interaction force stiffness constant F′ (z0 ) . For the

assessment of F ′ (z0 ) near the bottom of the force-separation curve where the

nonlinearity F"(z0 ) is maximum (nonlinear regime) and F ′ (z0 ) is relatively small, a

reasonable estimate of F ′ (z0 ) can be obtained directly from differences in the contact

and non-contact resonance frequencies of the cantilever. For the assessment of F ′ (z0 ) in

hard contact (linear regime) it is necessary to account for the bending moments of the

cantilever in large deflection.

III. ESTIMATES OF PARAMETER MAGNITUDES

The results obtained in Section II are general equations of the cantilever response

resulting from the cantilever tip-sample surface nonlinear force interaction. The

equations are valid for all materials and material systems, including bio-materials. For

many materials and microscope operating conditions, the general equations can be

simplified by using estimates of the relative sizes of the parameters appearing in the

equations. It is especially useful to obtain estimates of the order of magnitude of the

parameters mc , ms , Yc , Ys , kcn , and ks that appear in the model. The estimates and

resulting equation simplification are, of course, highly dependent on the particular

material under investigation and on the specifications of the cantilever itself.

The cantilever stiffness constant kc1 corresponding to the fundamental mode (n =

1) oscillation is generally measured to lie in the range 0.02 – 80 N m -1 . A calculation of

mc can be obtained from measurements of the fundamental resonance angular frequency
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of the cantilever in free space ωc1 and kc1 from the expression mc = kc 1 /ωc .

Measurements 17 of kc1 and ωc1 for typical commercial cantilevers indicate that mc is of

the order 10-11 - 10-12 kg.

We may obtain a crude estimate of ms by noting that an oscillating cantilever tip

in “point contact” with the sample surface generates spherical waves of frequency ω

with pressure amplitude

pPo e i (ωt − krr)	 46
r

where Po is the pressure at unit radius, r is the radial distance from the contact point, and

kr is the radial wave number. We assume for definiteness that the “unit” radius is equal

to the wave oscillation amplitude at the point of contact. Since “point contact” at the

atomic level ideally involves an interaction between a single atom at the cantilever tip

and a single atom of the sample surface, we assume that the wave displacement at the

contact point corresponds to the relative motion between the two atoms. Assuming that

the relative motion is of the order of interatomic distances, we estimate that the wave

displacement amplitude is roughly 0.1 nm. From Eq.(46) we assume that when r = 100

“unit” radii, the magnitude of p is sufficiently small that the oscillating mass associated

with such small pressures can be neglected. For a unit radius of 0.1 nm we obtain r =

10-8 m. It is of interest to note that this value of r is in agreement with estimates 14 of the

cantilever-sample contact radius rc obtained from Hertzian contact theory using a contact

force of 200 nN and a cantilever tip radius of 100 nm for a typical polymer material. The
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hemispherical volume V of material corresponding to this radius is of the order 10 -24 m3 .

Assuming a mass density ρ of order 103 kg m-3 for the sample material (roughly a typical

polymer density), we obtain ms = ρV ≈ 10-21 kg.

The magnitude of the sample stiffness constant ks and the sample absorption

coefficient γs can be estimated from the relationships of these parameters to the

longitudinal elastic modulus and acoustic attenuation coefficient of the material,

respectively. Consider a periodic solid lattice with lattice spacing L between lattice

points of mass m. Let un represent the displacement of the nth lattice point from its

equilibrium position resulting from a force Fn acting at that point. We assume that Fn

is a function both of ui and the particle velocity u& i where i takes the values n, n-1, and

n+1. Hence, the force depends not only on the displacement and particle velocity of the

nth lattice point but also on the displacements and particle velocities of points to either

side of the nth point. Following the approach of reference 18 we may write from

Newton’s Law

2m d un =
dt2 	F

n = ks [(un+1− un ) − (un − un−0] +γs [0in+1− un ) − (un − un−0]	 (47)

where ks is the sample stiffness constant and γs is the sample or lattice absorption

coefficient.

We divide Eq.(47) by AL = V, where A is some cross sectional area of the lattice

and V is the volume enclosed by A and L. Taking the continuum limit as L approaches

zero, we obtain the wave equation
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∂2 u

∂t2
= c 2 ∂

2 u	 ∂3u

	

∂x 2
+ λdis

∂t∂x2
	 (48)

where c = (C11 /ρ) 1 /2 is the sound velocity, ρ = m/AL is the mass density of the material,

C11 = ksL /A is the longitudinal elastic modulus, and λdis = γsL /ρA is the damping or

dissipation coefficient for the continuous wave. The magnitude of ks may be estimated

from the relation ks = C11A /L where A is the surface area subtended by the above-

considered hemisphere of radius r. Assuming C11 ≈ 109-1011 Pa, r ≈ 10-8 m, and L ≈ 0.4

nm, we obtain ks ≈ (102 – 104) N m-1.

We may estimate the magnitude of γs by assuming a solution to Eq.(48) of the

form u = upel(kx−ωt) where k is a complex wave number. Substituting this form into

Eq.(48), we obtain k2 = (ω /c) 2 [1 − i(ωλdis /c 2 ]−1 . The imaginary part of k is the

acoustic attenuation coefficient α from which we obtain

γs =
2Sρc 

3α	
(49)

Lω2

An examination of the attenuation coefficients of a variety of materials in both the liquid

and solid states together with other parameters occurring in Eq.(49) reveals that the

magnitude of γs for most materials falls in the range 10-4 – 10-7 kg s-1.
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IV. APPLICATION OF MODEL TO VARIOUS ACOUSTIC-ATOMIC FORCE

MICROSCOPE TECHNIQUES

The estimate of parameters obtained in Section III may be used to simplify the

equations derived in Section II describing the cantilever response resulting from the

interaction with the nonlinear cantilever tip-sample surface forces. The specific

simplification depends on the particular acoustic-atomic force microscopy under

consideration, the frequencies employed, and the material under investigation. We shall

consider the most frequently used A-AFM modalities including resonant difference-

frequency atomic force ultrasonic microscopy (RDF-AFUM), heterodyne force

microscopy (HFM), ultrasonic force microscopy (UFM), atomic force acoustic

microscopy (AFAM), force modulation microscopy (FMM), and the most commonly

used intermittent contact mode.

A. Resonant difference-frequency atomic force ultrasonic microscopy and heterodyne

force microscopy

Resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM)

employs an ultrasonic wave launched from the bottom of a sample, while the cantilever

of an atomic force microscope, driven at a frequency differing from the ultrasonic

frequency by one of the contact resonance frequencies of the cantilever, engages the

sample top surface. It is important to note that at high drive amplitudes of the ultrasonic

wave or cantilever (or both) the contact resonance frequency generating the difference-

frequency signal may correspond to one of the nonlinear oscillation modes of the

cantilever. As pointed out in Section II.B. iii, the effective contact cantilever resonance
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frequency for the (linear or nonlinear) mode n, ωcn , eff , may be defined as

ωcn,eff = [kcn + F′ (zo )] / mc , where kcn is the cantilever stiffness constant

corresponding to the nth (linear or nonlinear) non-contact resonance mode. Since F ′ (z0 )

is negative at the separation distance z 0 corresponding to the maximum nonlinearity, i.e.

maximum F ′′ (z0 ) , the resonance frequency of the cantilever in contact is smaller than the

value when not in contact. The nonlinear mixing of the oscillating cantilever and the

ultrasonic wave in the region defined by the cantilever tip-sample surface interaction

force generates difference-frequency oscillations at the cantilever contact (linear or

nonlinear) resonance.

Variations in the amplitude and phase of the bulk wave due to the presence of

subsurface nano/microstructures as well as variations in near-surface material parameters

affect the amplitude and phase of the difference-frequency signal. These variations are

used to create spatial mappings generated by subsurface and near-surface structures.

Heterodyne force microscopy (HFM) also utilizes difference-frequency signals generated

by the nonlinear mixing in the cantilever tip-sample surface interaction region. In this

technique no special advantage is taken of cantilever resonances and the difference-

frequency utilized is generally well below that of the cantilever resonance.

In both RDF-AFUM and HFM the cantilever difference-frequency response is

obtained from the nonlinear mixing in the region defined by the tip-surface interaction

force. The interaction force varies nonlinearly with the tip-surface separation distance.

The deflection of the cantilever obtained in calibration plots is related to this force; for

small slopes of the deflection versus separation distance, the interaction force and

cantilever deflection curves are approximately related via a constant of proportionality.



25

The maximum difference-frequency signal amplitude occurs when the quiescent

deflection of the cantilever approaches the bottom of the force well, where the maximum

change in the slope of the force versus separation curve (hence maximum interaction

force nonlinearity) occurs.

The dominant term or terms for the cantilever difference-frequency displacement

in Eqs. (1) and (11) depend on the values of kcn both for the linear and the nonlinear non-

contact modes of cantilever oscillation, Aco , and the value of F′ (z0 ) obtained at the

separation distance z0 at which the maximum difference-frequency signal occurs. We

designate the non-contact linear or nonlinear mode n for which the difference-frequency

contact resonance occurs as n = p. The dominant difference-frequency component in

Eqs.(1) and (11) is thus 71cp = 71cp,diff = ';cp,diff and is given by Eq.(35) for n = p as

';cp,diff = G p cos[(coc — cos ) t — Occ + Oss + #cs — Ocs + IF — B] . 	 (50)

where Gp , given by Eq.(36), and the phase terms in Eq.(50) are obtained from Eqs.(15)-

(18), (21)-(25), (37)-(43). It is important to point out in considering these equations that

while the difference-frequency resonance frequency (coc — cos ) in RDF-AFUM is usually

set to correspond to the lowest contact resonance mode of the cantilever (although a

higher modal resonance could be used), the cantilever driving frequency co c and

ultrasonic frequency cos generally are set near (but not necessary equal to) higher contact

resonance modes n = q and n = r , respectively, of the cantilever. For relatively small

difference-frequencies, it may occur that q = r. Thus, the cantilever stiffness constant kcn
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is appropriately given as kcp when involving the difference-frequency terms in Eqs.(15)-

(18), (21)-(25), (37)-(43), the stiffness constant kcq when involving the cantilever drive

frequency coc at or near the frequency of the qth cantilever resonance mode, and kcr when

involving the ultrasonic frequency cos at or near the frequency of the rth cantilever

resonance mode. If coc and cos are not set at or near a contact resonance modal frequency

of the cantilever, then it may be necessary to include more than one term in Eq.(1) and

(11) corresponding to different values of q and r.

It is seen from Eq. (36) that for a given value of (coc —cos ) the maximum value of

,̂cp,diff ideally occurs for a value of z 0 such that F′′ (z0 ) is maximized. An examination

of the force-separation curve of Fig.2 suggests that F ′′ (z0) is maximized near the bottom

of the curve. It is important to note, however, that F ′ (z0 ) , while relatively small

compared to that of the hard contact regime, is generally not equal to zero at that point.

Strictly, the values of F′′ (z0) and F ′ (z0 ) for a given z0 are each dependent on the exact

functional form of F(z 0 ) . A functional form for F(z0 ) sufficiently quantitative to

quantify F′′ (z0 ) and F′ (z0 ) is not typically available. However, experimental curves

for F(z0 ) can be obtained and compared9 to the experimental curves of ,̂cp,diff plotted

as a function of z 0 . It is generally found that for a given difference-frequency (coc — cos )

the maximum value of ^, cp,diff occurs when F′ (z0 ) is negative, that is when z0 is

slightly smaller than the value of z 0 corresponding to the minimum value of F(z 0 ) in

Fig.2. An examination of Eq.(36) suggests that a more exact approach to maximizing

,̂cp,diff would be not only to vary z 0 but also to vary slightly the difference-frequency
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from the free space resonance condition until an optimal setting for both z 0 and the

difference-frequency is achieved.

The equations for Gp and the phase terms in Eq.(50) may be simplified by using

the values of the parameters estimated in Section III. All terms in Eqs.(15)-(18), (21)-

(25), (37)-(43) involving the sample mass ms may be dropped to an excellent

approximation. For ultrasonic wave and the cantilever drive frequencies in the low

megahertz range we obtain, setting Aco = (coc — cos ), that

^cs tan— 1 Ys (Aco)	 (51)
ks

1 ( Ycks + Yskcp ) (Aco) — Ys mc (Aco) 3 
+ F′ (z0 )( Yc + Ys ) (Aco)

^cs ^ tan— , 	 (52)
kcpks — (mcks + Yc Ys ) (Aco) 2

 + F′ (z0 ) [kcp + ks — mc (Aco) 2 ]

^cc ;ti

	

	
( Ycks + Yskcq )coc — Ys mcco3

 + F′ (z0)( Yc + Ys  )coc 	 (53)
kcqks — (mcks + Yc Ys  )coc + F′ (z0 ) (kcq + ks — mccoc )

	

—1 ( Ycks + Yskcr )cos — Ysmccos + P (z0 )( Yc + Ys )cos 	(
^ss ^ tan	 54)

kcrks — (mcks + Yc Ys )cos + F′ (z0 )(kcr + ks — mccos )

and Gp is given by Eq.(36) where
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DRcs ≈ f [ks +γs (Δω)2 }1/2 f[kcpks − (Δω)2 (mcks +γcγs)
Rcs

+ F′ (zo )(kcp + ks − mc (Δω)2 )l2
	 (55)

+ [(Δω) (γskcp +γcks ) − (Δω)3γs mc + F′ (zo )ωc (γs +γc )l2 }− 1 /2

Qcc ≈ Fc f [ks + F′ (zo )l2 
+γsωc }

1/2 f[kcqks

− ω2 (mcks +γcγs ) + F′ (zo) (kcq + ks − mcω )l2
	 (56)

+ [ωc (γskcq +γcks ) − ωeγs mc + F′ (zo )ωc (γs + γc )l
2
 F

1/2

Qss ≈ Fs f [ks + F′ (zo )l2 +γ2ω2 } 1/2 f [kcrks

− ωs (mcks +γcγs ) + F′ (zo)(kcr + ks − mcωs )l2
	 (57)

+ [ωs (γskcr +γcks ) − ωsγsmc + F′ (zo )ωc (γs + γc )l
2  

}
−1 / 2

Qcs ≈−FsF′ (zo )f[kcrks − ωs (mcks +γcγs ) + F′ (zo) (kcr + ks − mcωs )l2

(58)

+ [ωs (γskcr +γcks ) − ωsγsmc + F′ (zo )ωs (γs +γc) l2 }− 1/2

Qsc ≈ −FcF′ (zo ) f [kcqks − ωe (mcks +γcγs ) + P (zo)(kcq + ks − mcωc
2

 )l
2

and

(59)
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+ [wc (Yskcq + Ycks ) — weYs mc + F′ (zo )wc (Ys +Yc )]
2 F1/2

The phase term IF in Eq.(50) is given by Eq.(43) and is quite complicated.

However, advantage can be taken of the fact that k s is generally quite large compared to

other terms in the numerators of Q cc, Qss, Qcs, and Qsc; the denominators of these terms

are very roughly all equal. Hence, the magnitudes of Qcc and Qss are usually quite large

compared to those of Qcs and Qsc. The terms involving the product QccQss thus dominate

in Eq.(43) and we may approximate IF as

IF ;tl acc — ass = tan— 1
 Yswc — tan— 1 	 Ycws	 (60)
ks + F′ (z0 )	 kcr + F′ (z0 ) — mcws

where acc and ass are obtained from Eqs.(24) and (25), respectively. To the same extent

that IF may be approximated by Eq.(60) we may approximate G p as

F′′ (zp D
Gp

	

	
) cs QccQss.(61)

2 Rcs

It is seen from Eqs.(50)-(61) that both the amplitude and phase of the difference-

frequency signal ̂ cp , diff are dependent on F s, Fc , ks, kc, Ys , and Yc in addition to wc and

ws . Since ks is proportional to the Young modulus of the material, the dependence of

^cp ,diff on Ys and ks means that scans of the sample contain information about the elastic

stiffness of the sample as well as information about surface damping, hence viscoelastic
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properties of the sample surface. Subsurface features of the sample are obtained via the

dependence of the difference-frequency signal amplitude on F s and via the dependence of

the difference-frequency phase signal on 0, since both F s and 0 vary as the result of

ultrasonic wave scattering from subsurface features. The signal response for HFM is

generally given by the same equations as those for RDF-AFUM except that a single mode

p may not necessarily dominate the signal, if the difference-frequency is above the lowest

contact resonance frequency of the cantilever. A sum of the largest modal contributions

is thus calculated for HFM to obtain the signal output. However, the difference-

frequency in HFM generally is set well below the lowest contact modal frequency of the

cantilever. In this case the appropriate equations are identical to those of RDF-AFUM

with p equal to the lowest linear or nonlinear contact modal frequency of the cantilever.

B. Ultrasonic force microscopy

In ultrasonic force microscopy (UFM) the cantilever drive frequency coc and drive

amplitude F c are zero; the surface drive amplitude F s and the drive frequency cos of the

wave generated by the transducer at the bottom of the sample are nonzero. UFM can be

operated at quite large frequencies, even in the gigahertz range. Although the vibrational

response of the cantilever is certainly quite small at such frequencies, operation at a tip-

surface separation distance z 0 corresponding to the nonlinear regime of the force-

separation curve, where F" (z0 ) is maximum, will produce a detectable static or “dc”

signal from the interaction nonlinearity. The generated static signal is called the

ultrasonic force.
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The nonlinear force-separation interaction results in a static displacement of the

cantilever ηc ,stat given as

ηc ,stat = ∑ηcn ,stat 	 (62)
n

where ηcn,stat is the contribution from mode n given by

ηcn,stat = εcn + ζcn,stat	 (63)

and εcn and ζcn ,stat are given by Eqs.(13) and (20), respectively. Terms in Eq.(20)

involving Qcc and Qsc are zero, since F c is zero for UFM. We assume operation of the

UFM in the nonlinear regime where F′′ (z0 ) is maximized and F′ (z0 ) is negative. Using

the values of the parameters estimated in Section III in the megahertz range of

frequencies, we may approximate the nonzero terms Qss and Qcs in Eq.(20) by Eqs.(57)

and (58), where kcq is replaced with kcn . We obtain

k sηcn ,stat = kcnks + P (zo )(kcn + ks) 

{F (z0 )

(64)

+ 
F′′ 4z0 ) [2εo + Q s + Q s + 2QcsQss cos αss] }
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where ε0 is given by Eq.(21) and αss is given by Eq.(25). To the extent that Qss is

much larger than Qcs because of the occurrence of ks and γsωs in the numerator of

Qss , Eq.(64) may be simplified by dropping the terms involving Qcs .

Eq.(62) admits all cantilever modes as contributors to the magnitude of the UFM

signal. However, Eq.(64) shows that the contribution to ηc , stat for a given mode n is

dependent on kcn such that for both the ultrasonic and non-oscillatory contributions to

Eq.(64) an increase in kcn results in a decrease in the magnitude of the contributions for

that mode. Since kcn increases in magnitude with increasing n, the contribution to ηc,stat

from a given mode generally decreases with increasing mode number for both the

ultrasonic and non-oscillatory components of ηcn,stat , although the exact relationship is

highly dependent on the values of γc, γs , ks, mc, and ω s that appear in Eq. (64).

The dominant contributions from the second term on the right-hand side of

Eq.(64) for a given ultrasonic drive frequency ωs occur for those cantilever modes

having values of [kcn + F′ (z0 )] near the value mcωs . The largest contributions occur for

values of ωs near a contact modal resonance frequency of the cantilever

[kcn + F′ (z0 )] / mc . In contrast, the first term on the right-hand side of Eq.(64) and the

component of the second term involving ε0 are independent of frequency and thus make

the major contributions when the ultrasonic drive frequencies are in the gigahertz range.

These terms predict that a static signal exists even without the presence of an ultrasonic

wave propagating through the sample and results directly from the interaction of the

cantilever with the sample surface via the interaction force, as would be expected.
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It is seen from Eq.(64) that 17cn,stat is dependent on both F s and ks . This means

that scans of the sample contain information about the elastic stiffness of the sample

through ks as well as information about subsurface features via the dependence of the

amplitude on F s. The dependence on ys means that UFM is sensitive to the viscous

properties at the sample surface as well.

C. Atomic force acoustic microscopy and force modulation microscopy

Both for atomic force acoustic microscopy (AFAM) and force modulation

microscopy (FMM) the cantilever drive amplitude and frequency are zero. As in UFM,

the surface drive amplitude and frequency o)s are nonzero. However, unlike UFM, the

surface drive frequency is limited to a range of frequencies that produces measurable

displacement amplitudes of cantilever oscillation. In contrast to UFM, the tip-surface

interaction distance is set to operate in hard contact, the “linear detection regime” of

operation, where z 0 is small, F(z0 ) is repulsive, F ′ (z0 ) is large and negative, and

F′′ (z0 ) is negligible.	 In the “linear detection regime” no difference-frequency or

harmonically generated signal is detectable, since for hard contact F ′′ (z0 ) is effectively

zero. The cantilever displacement amplitude 17cn,lin corresponding to the nth mode is

then obtained from Eq.(45) as 17cn,lin = scn + I;cn,lin . The contribution I;cn,lin resulting

from the nonlinearity is given by Eq.(26) and is seen to be zero, since F′′ (z0 ) is

effectively zero in the “linear detection regime.” The remaining contribution scn to the

cantilever displacement amplitude is given by Eq.(14). For values of the parameters
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estimated in Section III we may approximate εcn , hence ηcn , lin , in the low megahertz

range of frequencies as

ηcn , lin ≈ εcn ≈ Qcs cos(ωst −φss + θ) 	 (65)

where Qcs is given by Eq. (58), φss by Eq.(54), and θ .by Eq.(4).

Note that both Qcs and φss depend on the magnitude of F′ (z0) . For sufficiently

hard contact F′ (z0 ) becomes very large and negative and may dominate the terms in

Eq.(65). Under such conditions we obtain

Qcs ≈ −Fs { (kcn + ks − mcωs )2 + (γc +γs )
2ωs 

F1/2	 (66)

and

φss ≈ tan− 1 (γc +γs )ωs	 (67)
kcn + ks − mc 

2
COs

Eqs.(65)-(67) show that both the amplitude and phase of the cantilever

oscillations depend on kcn, ks, γc , γs, and ω s. For AFAM driving frequencies ω s near a

cantilever resonance kcn / mc corresponding to mode n, the signal amplitude is large

and the cantilever displacement is dominated by that mode. Although Eqs.(66) and (67)

appear to be independent of F′ (z0 ) , the equations are subtly dependent on F′ (z0 ) via the

restrictions F′ (z0 ) places on the resonance modes available. As pointed out in Section

II.B. iii, larges negative values of F′ (z0) eliminate from consideration all modes for
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which F′ (z0 ) < —kcn . For FMM, co s is much smaller than kc1 / mc , the fundamental

cantilever resonance frequency, although the fundamental resonance may not appear in

the calculations if F′ (z0 ) < kc1 .

D. Intermittent contact mode

The intermittent contact mode (TappingMode) is a standard feature on many

atomic force microscopes in which the cantilever is driven in oscillation, but no surface

oscillations resulting from bulk ultrasonic waves are generated (i.e., F s and cos are zero).

Thus, the intermittent contact mode cannot be used to image subsurface features, but

interesting surface properties and features can be imaged. Since intermittent contact

mode can be used in both hard and soft tip-surface contact (i.e. the linear and nonlinear

regimes, respectively, of the force-separation curve), the cantilever displacement i7cn ,lin

for mode n is given most generally as

i7cn.lin = ^cn + ;cn,lin
	 (68)

where ^cn is given by Eq.(14) with the term involving Qcs set equal to zero and ;cn ,lin is

given by Eq.(26) with all terms involving Qcs and Qss set equal to zero.

For the soft contact regime the expression for i7cn ,lin is

i7cn,lin = H cos(coct — Occ + A)	 (69)

where
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Λ = tan− 1 	sin(βc + μ cc −φcc − αcc)	 , 	 (70)
cos(βc + μ cc −φcc − αcc) + (Qcc / W )

W = R c ε0F′′ (z0 )(Q c + Q c + 2QccQsc cos αcc ) 1
 1/2	 (71)

cc

and

H = [Qc + W 
2 + 2QccW cos(βc + μ cc −φcc − αcc )]

1
 
/ 2	 (72)

where Qcc is given by Eq. (56), Qsc by Eq. (59), φcc by Eq. (53), μ cc by Eq.( 27), ε0 by

Eq.(21); acc , βc , Dc , and Rcc , are given by Eqs. (24), (29), (31), and (34), respectively,

with the terms involving ms set equal to zero.

The complexity of the cantilever response ηcn ,lin is greatly reduced for the hard

contact regime, where F′′ (z0 ) is negligibly small and F′ (z0 ) is very large and negative.

For hard contact Λ and αcc are approximately zero and we obtain

ηcn , lin ≈ Qcc cos(ωct −φcc)	 (73)

where

Qcc = Fc [ (kcn + ks − mcωc )
2
 + (γc + γS )2 

O)c
2

s )2wc ]
−1/2 	 (74)

and

φcc = tan− 1 (
γc +γs )ω 

2
c	 (75).

kcn + ks − mcωc
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The dependence of 17cn,lin on the material damping coefficient ys and the sample

stiffness constant ks , both for the hard and the soft contact regimes, means that the

intermittent contact mode can be used to assess the viscoelastic properties of the material

irrespective of the regime of operation.

V. IMAGE CONTRAST

All the above equations, except for Eqs.(4) and (6), were derived for constant

values of the cantilever and material parameters. If, in an area scan of the sample, the

parameters remain constant from point to point, the image generated from the scan would

be flat and featureless. We consider here that the sample stiffness constant ks may vary

from point to point on the sample surface. Since ks is proportional to the Young

modulus E, this means that E also varies from point to point. We assume that the value

of the sample stiffness constant sk′ at a given point on the surface differs from the value

ks at another position as k′s = ks + Aks . For any function f (ks ) having a functional

dependence on ks , a variation in ks generates a variation in f(ks )given as

Af = (df / dks ) 0 Aks , where the subscripted zero indicates evaluation at ks . A similar

expression can be obtained for the material damping parameter ys , but we shall not

consider such variations here.

A variation in ks produces a variation both in the amplitude and phase of the

signal generated by the cantilever tip-sample surface interactions. The variations in

amplitude and phase can be used to generate amplitude and phase images, respectively, in
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a surface scan of the sample. We first consider images generated by the phase variations

in the signal.

A. Phase-generated images

The phase factors involved in RDF-AFUM and HFM are given from Eq.(50), (4),

and (5) to be Occ, Oss, 3̂cs, Ocs , IF, and x; the phase factors involved in AFAM and

FMM are, from Eq.(65), Oss and x ; the phase factors involved in the intermittent contact

mode are, from Eq.(69), Occ , and A. Each of these phase factors is dependent on ks and

the variations in the phase factors resulting from variations in ks are responsible for

image generation when using phase detection of the A-AFM signal. The exact

dependence of the phase on ks , however, is different for soft and hard contact regimes.

i. Soft contact regime

For the soft contact regime the appropriate variations in the phase factors relevant

to HFM and RDF-AFUM are

⎛ d̂ 3cs	 _ _ 	 Ys4w	 4k , 	 (76)4^3 —	 4k —	 ^ 2
Ys (Aco)

2	 2cs — 
dks  0 

s	
[ks + F (z0 )] + 	 w)	

s

4Occ = — 
Acc 4ks
Bcc

where

Acc = [Ysk  q2 + 2F′ (z0 )Yskcq + F′ (z0)(Yc + Ys ) ]wc	 (78)

(77)
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+ [YcYs — 2Ys mc (kcq + F′ (z0 )lwc + mcYswc
5

Bcc = { [Ycks + Yskcq + F′ (z0 )(Yc + Ys )lwc — Ys mcwc
 } 2 	(79)

+ { [kcq — mcwc + F′ (z0 )l ks + F′ (z0 ) (kcq — mcwc) — YcYswc }
2

Ooss = — Ass Oks
Bss

and

(80)

where

Ass = [Yskc + 2F′ (z0 )Yskcr + F′ (z0 ) 2 (Yc + Ys ) lws	 (81)

+ [YcYs — 2Ysmc (kcr + F′ (z0 )lws + mcYsws

Bss = { [Ycks + Yskcr + F′ (z0 )(Yc + Ys) lws — Ysmcws}2 	 (82)

+ { [kcr — mcwS + F′ (z0 )l ks + F′ (z0 ) (kcr — mcws) — YcYsws} 
2

Oocs = — Acs Oks
Bcs

and

and

(83)

where

Acs = [Yskcp + 2F′ (z0 )Yskcp + F′ (z0 ) 2 (Yc + Ys )l (Ow)	 (84)

+ [Yc Ys — 2Ys mc (kcp + F′ (z0 )l (Ow)3
 + meYs (Ow) 5

and

Bcs = { [Ycks + Yskcp + F′ (z0 )(Yc + Ys )l (Ow) — Ysmc (Ow) 3 
}

2
	 (85)
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+ { [kcp — mc (Aw) 2 
+F'(z0)]ks + F′ (z0 ) [kcp — mc (Aw) 2 ]— Yc Ys (Aw) 2 } 2

To the extent that I' = acc — ass , as given by Eq.(60), we may write

AI' = Aacc = —	 , Yswc
2 2 2 

Aks . 	 (86)
[ks + F (z0 )] + Ys wc

The phase term AX is given by Eqs.(6) and (7).

The appropriate variations in the phase factors relevant to the intermittent soft

contact mode are Aacc , A Occ, and AA . The factor AA is obtained from Eq.(70) as

AA =
	 1 + (Qcc / W) cos(fic + ycc — Occ — acc )

[cos(fic + ycc — Occ — acc) + (Qcc / W)] 2 + sin2 (fic + ycc — Occ — acc )

(87)

x (Afic + Aycc — A Occ — Aacc)

where

Afic = — 2 

Ysw
2 2 

Aks 	 (88)
ks + Ys wc

A Occ is given by Eq.(77), and Aycc is obtained from Eq.(27). To the extend that Qsc is

much smaller than Qcc, we get from Eq.(27) that Aycc = Aacc where Aacc is given by

Eq.(86).
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ii. Hard contact regime

For the hard contact regime where F′ (z0 ) is very large and negative, the relevant

phase variations are obtained from Eqs.(67) and (75) as

Δφcc = − 	
(γc +γs )ωc 	 Δks , 	 (89)

(ks + kcq − mcc9 )2 + (γc +γs )
2

 ωe

and

Δφss = −
(γc +γs  )ωs 	 Δks . 	 (90)

(ks + kcr − mcωs )
2
 + (γc +γs )

2ωs

Eqs.(89) and (90) are appropriate to AFAM and FMM modalities as well as to the

intermittent hard contact mode of A-AFM operation.

iii. Dependence on the Young modulus

Hertzian contact theory provides that the sample stiffness constant ks is related to

the Young modulus E of the sample as 14

− 1
⎛

k = 2r ⎜
1 −υT

2 + 1 −υ2
	

(91)s	 ET 	E ⎠

where υ is the Poisson ratio of the sample material, ET and υT are the Young modulus

and Poisson ratio, respectively, of the cantilever tip, and rc is the cantilever tip-sample

surface contact radius. Hence,
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2

_ 2rc (1 − υ2 1 − υT 
+ 1 

υ2 
ΔE  . 	 (92)s	 E 2

⎝ ET

	E 
j

Eq.(92) can be used with Eqs(76)-(90) to ascertain the fractional variation in the Young

modulus ΔE / E from measurements of the phase variation in the signal from an

appropriate A-AFM modality.

B. Amplitude-generated images

The amplitude Gp of the RDF-AFUM signal is given by Eq.(61) to a good

approximation for most applications. The fractional variation in the signal amplitude

ΔGp / Gp resulting from variations in the sample spring constant ks , hence Young

modulus E, makes a considerable contribution to the image contrast when operating in

the amplitude detection modality. The fractional variation in amplitude is

ΔGp = 1 ⎛ ∂Gp

Gp Gp ⎝ ∂ks ⎠0 Δ
ks

(93)

⎧ 1 ⎛ ∂Qss ⎟ + 1
⎛ ∂Qcc ⎟ + 

Rcs ⎡ ∂
⎜

Dcs ⎤
 I ⎬Δks

⎪⎩ Qss ⎝ ∂ks ⎠0 
Qcc ⎝ ∂ks ⎠0 

Dcs ⎣ ∂ks ⎝ Rcs ⎠⎦ 0 ⎪⎭

where

1 ⎛ ∂Qss ⎟ = 	
ks + F′ (z0 )

Qss ⎝ ∂ks ⎠0 [(ks + F′ (z0) ) 2 + cs ]1
/2
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(94)

(assks + bss )ass + (cssks + dss ) css− 	 ,
(assks + bss )

2
 + (cssks + dss )

2

ass = kcr − mcωs
2 + F′ (z0 ) , 	 (95)

bss = P (z0 ) (kcr − mcωs) − γcγsωs ,	 (96)

css = γcωs ,	 (97)

dss = γskcrωs − mcγsωs + F′ (z0 )(γc + γs);	 (98)

1 ⎛ ∂Qcc ⎟ = 	
ks + F′ (z0 )

Qcc ⎝ ∂ks ⎠0 [(ks + F′ (z0 )) 2
 + c c ]

1 /2

(99)

(accks + bcc )acc + (cccks + dcc ) ccc− 	 ,
(accks + bcc ) 2

 + (cccks + dcc ) 2

acc = kcq − mcωc
2 + F′ (z0 ) , 	 (100)

— mc^c) — ycyswCbcc = F′  (z0 ) (kcq	 , 	 (101)
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ccc = γcωc ,
	 (102)

dcc = γskcqωc − mcγsωc + F′ (z0 )(γc +γs); 	 (103)

and

Rcs
⎡ ∂ ⎛ Dcs ⎞⎤

=
	 ks

Dcs ∂ks ⎝ Rcs ⎦ 0
 [(k2 + cS ]1/22

(104)

(acsks + bcs )ass + (ccsks + dcs )ccs− 	 ,
(acsks + bcs )

2
 + (ccsks + dcs )

2

	

bcs = kcp − mc (Δω) 2 + F′ (z0 ) , 	 (105)

ccs = F′ (z0 ) (kcp − mc (Δω)2 ) −γcγs (Δω)2 , 	 (106)

dcs = γc (Δω) , 	 (107)

hcs = γskcp (Δω) − mcγs (Δω) 3
 + F′ (z0 )(γc +γs). 	 (108)

It is apparent from Eqs.(93)-(108) that, although the RDF-AFUM signal

amplitude per se is highly dependent on F′′ (z0 ) and on the cantilever and ultrasonic

drive amplitudes Fc and Fs , respectively, the magnitude of the fractional variation
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ΔGp / Gp in the RDF-AFUM signal amplitude resulting from variations in the sample

spring constant ks is independent of Fc , Fs , and F′′ (z0 ) . However, ΔGp / G p is

dependent upon the values of the cantilever spring constant kcn where n = p, q, and r as

discussed in Section IV.A. The values of kcn in turn are highly dependent on the choice

of cantilever and the frequency chosen to drive the cantilever into resonance. Although

ΔGp / Gp makes a considerable contribution to image contrast, it is not the only

contribution. As with all A-AFM techniques the resolution of the image digitizer, the

dynamic range and signal-to-noise features of the electronic components, the sharpness of

the cantilever tip, and the bonding of the ultrasonic transducer among other factors also

contribute to the image contrast. The contrast for RDF-AFUM, however, cannot

generally exceed that rendered by ΔGp / Gp . The magnitude of the signal variation for

HFM is given by the same equation as for RDF-AFUM except that a single mode may

not necessary dominate the signal. A sum of the largest modal contributions may be

appropriate to calculate for HFM the cantilever displacement.

The amplitude of the UFM signal is given by Eqs.(62)-(64). Assuming that Qcs is

small compared to Qss and ε0 , hence negligible in the calculations, we obtain the

fractional variation in the cantilever displacement amplitude for the nth mode to be

⎧ ∂60
+

6o 1	 ∂Q I
Δηcn ,stat = 	

F′ (z0 )kcn 	 + 

F′′ (z0 )(ε0 ∂ks 2
Qss ∂ks) ⎬ Δk (109)

ηcn ,stat ⎪ ks [kcnks + P (z0 ) (kcn + ks )] F (z0 ) + 
′
4 (2ε0 + Qss )	

s

⎩ 	 4	
J[

0
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where Qss is given by Eq.(57) with q = n, (∂Qss ∂ks )0 by Eq.(94) with q = n, ε0 by

Eq.(21), and (∂ε0 ∂ks ) 0 by

∂ε0 = − 	
F(z0 )kcn . 	 (110)

⎝ ∂ks ⎠0 	 kcnks + P(z0 )(kcn + ks)

For AFAM and FMM the cantilever displacement amplitude is from Eq.(65)

dependent on Qcs where Qcs is given by Eq. (58). The fractional change in the signal

amplitude for mode n is obtained to be

2ΔQcs = − 	 kcn + k2 − mc ωs
	2 2 

Δks . 	 (111)
Qcs	 (kcn + ks − mcωs) + (γc + γs ) ωs

The availability and dominance of modes are discussed in Section IV.C.

For the intermittent hard contact modality the amplitude is dependent on Qcc

which for hard contact is given by Eq.(74). The fractional change in the amplitude for a

given mode n is obtained as

2ΔQcc = − 	 kcn + k2 − mcωc	

2 2 
Δks . 	 (112)

Qcc	 (kcn + ks − mcωc ) + (γc + γs ) ωc
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It is interesting to note that the variation in amplitude for intermittent hard contact is

identical to that of AFAM and FMM except that in intermittent hard contact the drive

frequency is coc whereas in AFAM and FMM the drive frequency is cos .

VI. APPLICATION TO LARC-CP2 POLYIMIDE FILM

The above equations are applied to the assessment of AE / E in LaRC-cp2

polyimide polymer from measurements 9 of the variations in the phase signal using RDF-

AFUM. The values of the relevant material and cantilever parameters are 9 ks = 96.1 N

m- 1 , kc 1  = 14 N m-1 , ys = 4.8 x 10-5 kg s-1 , mc = 3.9 x 10-12 kg, E = 2.4 GPa, a/2 = 12.7

µm, a = 85 m-1 , F′ (z0 ) = - 53, coc / 2;r = 2.1 MHz, cos / 2;r = 1.8 MHz, and Aco / 2;r =

0.3 MHz.	 From Eq.(50) the variation in the phase signal is given as

(Aoss — Aocc + Aflcs — Aocs + AF + Ax) . From Eqs.(6),(7),(76)-(86) we calculate that

Aflcs and AF = Aacc make by far the dominate contributions to the RDF-AFUM phase

signal variations. The contribution from Ax is relatively small because the thickness of

the sample a/2 does not correspond to a resonance thickness for the ultrasonic wave. The

factors Aoss and Aocc are relatively close in magnitude and result in relatively little net

contribution to the phase variations in Eq.(50). The factor Aocs is also calculated to be

small with a sign opposite to that of (Aoss — Aocc) and results in further minimizing the

net phase contribution from these three terms.

From the above equations and a measured phase variation of 13.2 degrees

obtained in the RDF-AFUM phase image 9 we calculate a value of approximately 24

percent for the variation in the Young modulus for the material. This value is also in

good agreement with a value of roughly 21 percent obtained from independent
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mechanical stretching experiments in which the increase in the modulus is attributed to

the growth during stretching of a crystalline phase having a larger Young modulus than

that of the original amorphous phase 20
. The growth of the crystalline phase in LaRC-CP2

is attributed to internal stresses generated during curing by the different thermal

expansion coefficients of the polymer material and gold nanoparticles embedded in the

polymer matrix.

A further test of the present model can be obtained from the intermittent soft

contact image taken concurrently with the RDF-AFUM image of the LaRC-CP2

specimen9 . The variation in the phase signal is measured from the intermittent soft

contact micrograph to be roughly 1.5 degrees. From Eq.(69) the variation in the phase

signal for intermittent soft contact is analytically given as (−Δφcc + ΔΛ) . Using the

above-stated values of the material and cantilever parameters in Eqs.(86)-(88) ,we

calculate that for the measured variation of 1.5 degrees in the intermittent soft contact

image the variation in the Young modulus is roughly 18 percent. This value is in good

agreement with the values obtained from the RDF-AFUM image and from the

independent, mechanical stretching measurements.

VII. CONCLUSION

The various modalities of acoustic-atomic force microscopy (A-AFM) have

become important nanoscale characterization tools for the development of novel

materials and devices. Most of the information obtained from A-AFM has been

qualitative because of the lack of a comprehensive analytical model to render the data

quantitative. The most significant impediment to the development of such a model has



49

been the nonlinearity of the cantilever tip-sample surface interaction force. We have

developed a detailed mathematical model of this interaction by assuming that the

interaction is appropriately represented by a nonlinear spring coupled at the opposite ends

by linear springs representing simple harmonic oscillators for the cantilever and sample

surface. The dynamics of the coupled springs are described by a pair of coupled

differential equations that are solved using a standard iteration procedure. Only flexural

vibrations of the cantilever and out-of-plane oscillations of the sample surface are

considered in the present derivation.

Solutions are obtained for specific A-AFM modalities including the commonly

used intermittent contact mode (TappingMode), force modulation microscopy (FMM),

atomic force acoustic microscopy (AFAM), ultrasonic force microscopy (UFM),

heterodyne force microscopy (HFM), and resonant difference-frequency atomic force

ultrasonic microscopy (RDF-AFUM). Image generation and contrast equations are

obtained for each of the aforementioned A-AFM modalities assuming for expediency that

the contrast results only from variations in the sample stiffness constant. Since the

sample stiffness constant is related directly to the Young modulus of the sample, the

contrast can be expressed in terms of the variation in the Young modulus from point to

point as the sample is scanned.

A portion of the present solution set was obtained previously9 using feasibility

arguments to render the analytical equations and applied to the assessment of the

fractional variation in the Young modulus AE / E of LaRCTM-CP2 polyimide polymer

from measurements of the variations in the phase signal using RDF-AFUM. The present

derivation provides a solid analytical framework for the feasibility arguments. The
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calculation of 24 percent for AE / E is in good agreement with a value of 21 percent

obtained from independent mechanical stretching experiments in which the increase in

the modulus is attributed to the growth during stretching of a crystalline phase having a

larger Young modulus than that of the original amorphous phase 20

Further application of the model to intermittent soft contact images of the same

polymer material yields a value of 18 percent for the variation of the Young modulus.

This value is also in good agreement with the mechanical stretching experiments. The

difference between the RDF-AFUM and intermittent soft contact assessments of AE / E is

attributed to error propagation resulting from the relative complexity of terms, the

approximations used, and the number the terms encountered in the respective model

calculations. Nonetheless, the agreement between the RDF-AFUM and the intermittent

soft contact assessments is quite good considering that the calculations are performed on

rather disparate equations. More importantly, the agreement between the model

predictions and the measurements from independent mechanical tests provides quite

strong evidence for the general validity of the present model.

The present model can also be used to quantify the image contrast from variations

in the sample absorption coefficient ys or from a combination of absorption coefficient

and Young modulus variations in the material. Space limitations prohibit the inclusion of

such contrast mechanisms here, but the effects can be derived straightforwardly by the

reader from the equations derived above. Although the present model is developed for

flexural oscillations of the cantilever and out-of-plane vibrations of the sample surface,

the model can in principle be extended to include other modes of cantilever oscillation

and sample surface response. It is anticipated that such a development would provide
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even greater opportunities for obtaining quantitative information on material properties

using the various A-AFM modalities.
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FIGURE CAPTIONS

Fig.1 . Schematic of cantilever tip-sample surface interaction: Left side shows relative

positions of the cantilever tip and sample surface in the presence of an interaction

force. Right side shows spring model representing the dynamics of the tip-surface

interaction. z0 is the quiescent tip-surface separation distance, z the oscillating

tip-surface separation distance, i7c the displacement (positive down) of the

cantilever tip , i7s the displacement of the sample surface (positive up), kcn is the

nth mode cantilever spring constant, mc the effective cantilever spring mass, ks

the sample spring constant, ms the effective sample spring mass, and F ′ (z0 ) and

F′′ (z0 ) are the linear and first-order nonlinear sample stiffness constants,

respectively.

Fig.2. Schematic of interaction force as a function of the separation distance between

cantilever tip and sample surface.
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Fig. 1.
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QuickTime Tm and a
TIFF (LZW) decompressor

are needed to see this picture.

Fig. 2.


